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Description of data and statistical analyses 

 

FINRISK and Health 2000 cohort description 

The methods, measurements and protocols used in the FINRISK and Health 2000 

studies have been essentially the same over time and are similar to those in the 

Health 2000 Survey  1,2. Data were collected from each participant at baseline via 

interviews (Health 2000), questionnaire and health examination by trained physicians 

and nurses (Health 2000) and trained nurses (FINRISK) using standardized 

procedures of the MONICA 3 and European Health Risk Monitoring projects 4. Blood 

samples collected at baseline for a wide spectrum of laboratory measurements were 

handled using a standardized protocol. Detailed descriptions of study protocols have 

been published previously  1,2. All participants provided signed informed consent, and 

the studies were approved by the Coordinating Ethical Committee of the Helsinki and 

Uusimaa Hospital District (previously studies also approved by the institutional review 

board of the National Public Health Institute, both in Helsinki, Finland). The FINRISK 

and Health 2000 sample collections were transferred to THL Biobank in 2015 after 

approval of the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital 

District. 

 

Follow-up data were obtained from several national registers through linkage using 

the unique personal identity code assigned to all Finnish residents. Data for 

hospitalizations were obtained from the Care Register for Health Care (HILMO), 

which covers all hospitalizations in Finland since 1969. One or several ICD-

diagnoses are assigned to each hospitalization at discharge; these diagnosis codes 

are systematically recorded in the HILMO register. Data for malignancies were 
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obtained from the Finnish Cancer Registry, with nationwide cancer records since 

1953. Vital status and cause of death data were obtained from Statistics Finland. In 

Finland, each person who dies is by law assigned a cause of death (in accordance 

with the ICD) to the official death certificate, issued by the treating physician based 

on medical or autopsy evidence, or forensic evidence when necessary; the death 

codes are then verified by medical experts at the register and recorded according to 

systematic coding principle. Data collection to all these registries is mandatory by law 

and general quality is consistent and virtually 100% complete 5,6. 

 

Statistical analyses 

The primary variables of interest were objective, readily available, simple and 

reproducible factors identified a priori based on previously published data, clinical 

rationale and their ease of use in primary care settings; however, we were limited to 

factors available in the dataset. 

 

In the derivation cohorts, respondents were asked to report how often they 

consumed alcoholic beverages during the previous year and the average amount 

they consumed per week during the previous month. Average alcohol intake (grams 

per day) was calculated as the sum of the daily number of drinks multiplied by the 

average alcohol content per type of alcoholic beverage. In the Whitehall II data, 

respondents reported the number of drinks they consumed in the previous week, and 

we used the average alcohol intake reported over the follow-up visits (phases) 1-5. 

One drink was defined as 10 grams of ethanol in line with recent guidelines 7. 

Participants were also asked if they had been abstinent their entire life (lifetime 

abstainer) or had used alcohol earlier and then stopped (current abstainer). Binge 
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drinking was defined as drinking 5 or more alcohol drinks per occasion. Respondents 

reported the number of times during the last 12 months that they consumed 5 or 

more drinks per occasion. Smoking status (active smoker, former or never smoker) 

and number of daily cigarettes were asked. Waist and hip circumference were 

measured using standard techniques as previously described 1,2. Exercise was 

assessed by asking how often the subject performs leisure-time physical exercise for 

at least 20-30 minutes so that he/she is at least slightly out of breath and sweaty. 

Diabetes was defined either by a fasting serum glucose ≥7.0 mmol/L (126 mg/dL), 

taking diabetic medication, or by having a prior known diabetes diagnosis. 

 

We developed two parallel models, one based on non-laboratory values only 

(Modelnon-lab), and one based on the same variables and additionally including 

laboratory values (Modellab).  

Gamma-glutamyl transferase (GGT) was considered as a marker of liver damage 

and/or oxidative stress. 

 

GGT was chosen as the primary analyte of interest over other common liver 

enzymes because of several reasons: 

    

1) GGT is a stronger predictor of incident clinical liver disease than ALT or AST ir 

previous studies 8. 

2) GGT shows highest sensitivity for liver disease above other liver tests and is a 

good predictor of liver disease and liver mortality 9. 
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3) GGT is a more sensitive detector of hepatic steatosis than ALT or AST, and 

contributes to several algorithms for the diagnosis of NAFLD (Fatty Liver Index and 

SteatoTest) and liver fibrosis (Fibrotest and Hepascore) 10. 

4) GGT is an acknowledged trigger for further liver fibrosis assessment in fatty liver 

disease according to expert opinion 11. 

5) GGT reflects body oxidative stress 12, which is implicated in the pathophysiology of 

chronic liver disease 13. 

 

Modification of some variables on clinical grounds 

Alcohol use was assessed as number of drinks (á 10g of ethanol) per week. Alcohol 

use was capped at 50 drinks per week, because higher intake is generally associated 

with considerable reporting bias (underreporting), there were few subjects with higher 

consumption in our dataset, higher intake is clearly associated with severe health 

risks (both liver-related and other diseases) regardless of our risk prediction model. 

This means that, in such persons, alcohol-reducing interventions are merited 

anyway. In addition, UK guidelines recommend liver evaluations for those with 

alcohol consumption of more than 50 drinks per week 14. 

 

GGT was capped at 200 U/L, because higher values deserve further evaluation 

regardless of our risk prediction model, and there were few subjects with GGT >200 

U/L in our cohorts, thus resulting in substantial uncertainty around risk estimates 

when GGT is above 200 U/L. 
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Imputation of missing baseline values 

Baseline data with ≤5% missingness were imputed by 5 multiple imputations using 

the predictive mean matching method in the mice package in R-software for the 

following continuous variables waist circumference, waist-hip ratio, body mass index, 

alcohol use (drinks/week), HDL-cholesterol, GGT, triglycerides, and non-HDL-

cholesterol. Missing values were predicted based on these same variables as well as 

age, sex, diabetes, smoking status, and the liver outcome. 

 

In the derivation cohorts, data on exercise, binge drinking, alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), and homeostasis model assessment of 

insulin resistance (HOMA-IR) were missing in >15% because these variables had not 

been assessed in all sub-cohorts. These variables were excluded from initial variable 

selection, but later tested in the complete-case dataset whether they improved model 

fit and performance. These variables were not imputed due to the high missingness 

rate. 

 

Model building 

Candidate variables were tested for association with liver outcomes by univariate and 

multivariable Cox regression analyses with incident liver disease as the outcome. 

The proportional hazards assumption of the Cox models was checked using 

Schoenfeld residuals, and no violations were detected. Continuous predictors were 

assessed for possible nonlinear relationship with outcome using restricted cubic 

splines with degrees of freedom selected using the Akaike Information Criterion (AIC; 

a smaller AIC-value is better). These procedures were repeated for the multivariable 

model. To limit collinearity, among variables with a Spearman correlation coefficient 
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of >0.6 (Supplementary figure 1), we chose the variable judged to be clinically more 

important. In addition, in the multivariable model, we tested whether model fit was 

improved by replacing these variables with the omitted correlated variables. 

Multicollinearity was also assessed with the variance inflation factors. Predictors of 

liver outcomes with a univariate P<0.2 were examined in the multivariable analysis, 

and the final model was selected by backward stepwise elimination separately with 

P>0.05 or AIC as removal criteria, except for age, which was retained in the model as 

a measure of exposure time regardless of statistical significance, assuming that older 

individuals have longer exposure times. Improvement in model fit was subsequently 

tested by re-insertion one at a time of the removed predictors. Two-way interactions 

among the variables in the final model and with sex were investigated and included in 

the final model if they improved model fit. We assessed model fit and model 

performance with AIC and and Wolbers’ C-statistic, respectively, and compared 

nested models using the likelihood ratio test.  

 

Using cause-specific Cox regression considering death without liver disease as a 

competing-risk event, we assessed the performance of the final model in terms of 

discrimination (Wolbers’ C and time-dependent AUC) and calibration. Unlike the 

commonly used Harrell’s C-statistic, Wolbers’ C and time-dependent AUC account 

for the competing risk of death without liver disease 15. Calibration was assessed by 

comparing the predicted risk of incident liver disease with the observed risk using 

calibration plot. We did internal validation to correct measures of predictive 

performance for optimism (over-fitting) by bootstrapping 200 samples of the 

derivation data starting from the multivariable variable selection. Bootstrap estimates 

of calibration accuracy were performed using the calPlot function of R’s pec-package. 
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Modellab was compared to Modelnon-lab by reclassification, which compares the 

models’ abilities to correctly classify cases into correct risk categories (Table S7 and 

8). Estimates of 15-year absolute risks of developing a liver outcome based on the 

individual risk-factor profile were visualized by color-coded scoring sheets 

(nomograms). 

 

External validation was performed by calculating a risk score for each person in the 

validation cohorts using the individual predictors and the respective Cox regression 

coefficients as estimated in the derivation cohort. We then fitted a cause-specific Cox 

regression with this risk score as a single covariate, and examined the performance 

of this model by Wolbers’ C-statistic, time-dependent AUC, and calibration plots and 

stratified subjects in risk groups using the same cutoff-values of the risk score as in 

the derivation cohort. To assess the extent of clinical transportability of the prediction 

model, we quantified the relatedness between the derivation and validation dataset, 

and the extent to which they share common predictor effects according to Debray et 

al 16. 

 

Stepwise variable selection 

 

The following variables were initially considered: age, sex, waist circumference (WC), 

waist hip ratio (WHR), body mass index (BMI), GGT, alcohol use (drinks/week), 

diabetes, alcohol status, smoking group and smoking status. 

 

Of the anthropometric measures, we chose WHR because it has been shown to be 

superior to WC and BMI in discriminating risk for liver disease in the general 
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population in several studies 17-19. However, we later analyze whether WC or BMI 

brings added value to model performance. 

 

In addition, lipid levels (LDL, HDL, non-HDL and triglycerides) were used in 

computation of missing values, but were not included in the multivariate models due 

to uncertainty regarding the causal pathways for liver disease. 

 

Variable selection for Modelnon-lab  

Multivariate modeling: Based on the analyses above, we started with the following 

variables: age, sex, diabetes, WHR, alcohol use, alcohol status and smoking status.  

 

Stepwise backward elimination using the Akaike Information Criterion for variable 

selection: Factors in Final Model: age, WHR, alcohol use, diabetes, smoking status. 

Alcohol status and sex were removed from the model. 

 

Alternative stepwise backward elimination using P-value <0.05 for variable selection: 

the same variables were chosen in the final model. 

 

Testing linearity of predictors: only alcohol use was significantly non-linear. 

 

Forward procedure: does insertion of alcohol status or sex one by one improve 

model fit?: Inclusion of sex led to a significant improvement (P=0.03, likelihood ratio 

test, LRT) of model fit. There was no improvement after inclusion of alcohol status. 
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Variable selection for Modellab 

Multivariate modeling: Based on the analyses above, we started with the following 

variables: age, sex, diabetes, WHR, alcohol use, alcohol status, smoking status, and 

GGT.  

 

Stepwise backward elimination using the Akaike Information Criterion for variable 

selection: Factors in Final Model: age, WHR, alcohol use, diabetes, smoking status, 

and GGT. Alcohol status and sex were removed from the model. 

 

Alternative stepwise backward elimination using P-value <0.05 for variable selection: 

the same variables were chosen in the final model. 

 

Testing linearity of predictors: only alcohol use was significantly non-linear. 

 

Forward procedure - does insertion of alcohol status or sex one by one improve 

model fit?: There was no improvement (P>0.05, LRT).  
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Improvement in model fit in various alternative scenarios 

 

Anthropometric measures 

Considering WC instead of WHR provided slightly poorer results for modellab 

performance/fit (C-statistic 0.779 vs 0.786, AIC 4070 vs 4053, p<0.001 by LRT) and 

modelnon-lab performance/fit (C-statistic 0.808 vs 0.809, AIC 3943 vs 3938, p<0.001 by 

LRT).  

 

An alternative modellab with BMI (non-linear) and WHR was similar (C-statistic 0.810, 

AIC 3914) to a model  with WHR without BMI (C-statistic 0.809, AIC 3938, p<0.001). 

Similar results were found for modelnon-lab (C-statistic 0.790 vs 0.786, AIC 4034 vs 

4053, p<0.001). A model with BMI vs a model with WHR were fairly similar, but with a 

small advantage for WHR (modellab: C-statistic 0.808 vs 0.809, AIC 3927 vs 3938, 

p<0.001, modelnon-lab: C-statistic 0.778 vs 0.786, AIC 4062 vs 4053, p=0.446). 

 

Furthermore, based on the relationship between BMI and risk for incident liver 

disease in our multivariate models (Supplementary figure 2), it seems that the added 

value from BMI comes solely from underweight status, possibly reflecting pre-existing 

illness. In other words, the risk effect from obesity is already captured in the 

covariates WHR or WC, but these covariates may not sufficiently capture the risk 

effect from underweight. We also analyzed whether a dichotomous covariate 

reflecting underweight (yes vs no) stratified by WHO’s definition of underweight (BMI 

<18.5 kg/m2) improve the models. However, there were only 83 subjects with BMI 

<18.5 kg/m2 and only 2 liver events in this subgroup. Similarly, model performance 

did not improve after exclusion of subjects with BMI <18.5 kg/m2. Based on this, and 
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considering that measures of abdominal obesity have previously been shown to be 

stronger predictors of liver disease than BMI 17-19, we leave BMI out from the models 

altogether. 

 

Smoking 

Considering smoking group (which includes also the amount of smoking; Table S3) 

instead of smoking status (which only considers whether the subject is a current 

smoker) did not improve model performance/fit (modellab: C-statistic 0.807 vs 0.809, 

AIC 3944 vs 3938, p<0.001; modelnon-lab: C-statistic 0.784 vs 0.786, AIC 4057 vs 

4053, p<0.001). The model with the simpler smoking status was better. 

 

Additional variables 

Inclusion of additional candidate variables was tested in the complete-case dataset. 

Model performance/fit was not significantly improved by inclusion of binge drinking 

(modellab p=0.57, modelnon-lab p=0.12), exercise (modellab p=0.40, modelnon-lab 

p=0.18), or HOMA-IR (modellab p=0.07). The model with GGT was significantly better 

than a model with ALT (modellab AIC 1131 vs 1203, p<0.001), or AST (modellab AIC 

1054 vs 1101, p<0.001).   

 

Influence of gender 

 

We first tested whether the interaction term between sex and the other predictors 

was significant in age-adjusted Cox regression analysis for incident liver events 

(Table S5), and plotted the age-adjusted non-linear interaction effects between sex 

and key predictors using splines (Supplementary figure 3). We then tested whether 
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the interaction term between sex and the other predictors were significant in the 

multivariate models (Table S6). 

 

Inclusion of the interaction terms between sex and GGT, and between sex and 

smoking status alone or together improved model fit significantly in Modellab (p<0.05, 

LRT). Inclusion of the interaction term between sex and smoking status improved 

model fit significantly in Modelnon-lab (p=0.019, LRT). 

 

As the interaction effect between sex and GGT was particularly profound at low 

levels of GGT, we also tested an interaction term between GGT <25 U/L (yes or no) 

and sex in Modellab. However, inclusion of GGT and the interaction term GGT<25 * 

sex did not improve model fit compared to inclusion of GGT and the interaction term 

GGT * SEX (P=0.338). 

 

We found no significant interaction between alcohol use and other variables in the 

model. Also, considering WC instead of WHR did not improve model fit when tested 

separately in women or men. Hazards ratios with 95% confidence intervals for each 

covariate in Modellab separately for men and women are shown in Supplementary 

figure 4. 

 

Rank-hazard plots to visualize the relative importance on a population level of 

covariates in Modellab are shown in Supplementary figure 5. 

 

Final models 
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The final models include the following factors:  

Modellab: age, WHR, alcohol use (spline variable), GGT, diabetes, smoking status, 

sex*GGT, sex*smoking status. 

 

Modelnon-lab: age, WHR, alcohol use (spline variable), diabetes, smoking status, 

sex*smoking status. 

 

Alcohol use remained significantly non-linear in both models. 

 

We then checked possible multicollinearity using the variable inflating factor (VIF) 

method (excluding interaction terms): 

Covariate  VIF 

Age   1.11           

WHR   1.87           

Alcohol use  1.46          

GGT   1.30     

Diabetes   1.06      

Smoking status  1.14    

Sex   1.77  

 

All VIF values are low (<2); therefore, no significant multicollinearity seems to exist. 

 

Risk stratification 
 

Risk stratification based on Modellab 
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Based on the model’s prognostic index risk score distribution, subjects were 

classified into risk groups defined by an estimated 15-year cumulative probability of 

liver events of <0.5%, 0.5-4%, 5-9% and ≥10%, respectively. These risk groups are 

called “minimal risk”, “low risk”, “intermediate risk”, and “high risk” (Supplementary 

figure 7-8).  

 

We used 15-year risk as it is known that it takes on average this time for clinical liver 

endpoints to develop from early-stage liver disease (fibrosis stage 0-1) 20, and risk 

stratification on a shorter time scale may thus lead to suboptimal discrimination. This 

is different from studies with risk stratification based on the severity of subclinical 

disease (fibrosis scores) rather than pathophysiologic risk factors of disease (present 

models). 

 

Risk group         No events Liver event  Non-liver death Proportion 

  (liver event 

/ non-liver 

death)  

Minimal risk  12074          23             634  0.036 

Low risk       10525         123              1320  0.093 

Intermediate risk   508             27              127  0.213 

High risk            269             49              81  0.605 
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The high-risk group comprising 1.5% of the entire population was able to capture 

22% of all liver events within 15 years. Considering the high- and intermediate-risk 

groups together, the corresponding values were 4% and 34%, respectively. 

 

 

Risk stratification based on Modelnon-lab 

Subjects were classified into risk groups as above (Supplementary figure 9). 

 

Risk group                   No events Liver event Non-liver death Proportion  

(liver event 

/ non-liver 

death) 

Minimal risk  10257         24             550  0.044 

Low risk       12195        127             1396  0.091 

Intermediate risk   731             48              161  0.298 

High risk            193             23              55  0.418 

 

The high risk group comprises only 1% of the entire population, but 10% of all liver 

events within 15 years occurred in this risk group. Considering the high and 

intermediate risk groups together, the corresponding values are 5% and 32%, 

respectively. 
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External validation 
 

The distribution of the risk scores (linear predictor) in the derivation and validation 

cohorts are shown in Supplementary figure 10. 

 

Relatedness between the derivation cohort and Whitehall II cohort 

Besides statistical reproducibility, we also assessed the extent of clinical 

transportability of Modelnonlab by quantifying the relatedness between the derivation 

and Whitehall II validation dataset and the extent to which they share common 

predictor effects 16. Relatedness was examined by fitting a binary logistic regression 

model, a membership model, to predict the probability of an individual belonging to 

the derivation dataset. We assessed discriminative ability of this membership model, 

which included age, sex, WHR, diabetes, alcohol use, smoking status, follow-up time 

and liver event (yes/no) as independent variables, by means of concordance (C) 

statistic (Supplementary figure 14). Here, a higher C-statistic indicates a lesser extent 

of relatedness between the datasets. 

 

The extent to which the datasets share common predictor effects was examined by 

assessing the relative difference in spread (standard deviation) and the difference in 

mean of the model’s linear predictor in the validation dataset as compared to the 

derivation dataset. When the derivation and validation samples have a very similar 

case mix, external validation provides results similar to internal validation, and, thus, 

adds little additional value. A higher heterogeneity in predictor-outcome associations, 

i.e. higher variability of the linear predictor, indicates better discriminative ability of 

the model. A difference in the mean of the linear predictor between the derivation and 

validation samples reflects the difference in the predicted frequency of the outcome, 
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with a large difference being indicative of the model's calibration-in-the-large in the 

validation sample. 

 

A similar relatedness analysis for the CCHS cohort could not be performed because 

none of the researchers had at the same time access to raw data from both the 

derivation and validation cohorts. 
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The risk score equation 

 

The equation in R software language 

data = name of the R data 

AGE = age in years (40-70 years) 

SEX = men = 1; women = 2 

WHR = waist hip ratio 

ALCOHOL = number of weekly drinks (1 drink = 10 g ethanol) 

 Set to = 50, if >50 drinks per week 

GGT = gamma glutamyltransferase (U/L) 

 Set to = 200 U/L if >200 U/L 

DIABETES = yes = 1; no = 0 

SMOKING = current smoker = 1; never/previous smoker = 2 

 

Modellab 

data$modellab <- (-6.7922721 + 0.044744302* data$AGE + 0.32961593*( 

data$WHR*10) + 0.19860813* data$ALCOHOL - 

0.0082096868*pmax(data$ALCOHOL-0.1,0)^3 

+0.010575035*pmax(data$ALCOHOL-1,0)^3 -0.002004756*pmax(data$ALCOHOL-

3,0)^3 -0.00033998925*pmax(data$ALCOHOL-9,0)^3 -2.0602882e-

05*pmax(data$ALCOHOL-33,0)^3 +0.011813962* data$GGT 

+0.18721469*(data$SEX=="2") +0.55249734*(data$DIABETES=="1") + 

0.74679941*(data$SMOKING=="1") +0.0054325769* data$GGT*(data$SEX=="2") -

0.64903176*( data$SEX=="2")*( data$SMOKING=="1")) 
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Modelnon-lab 

data$modelnonlab <- (-8.0940103 +0.044177151* data$AGE +0.48927753*( 

data$WHR*10) +0.19222894* data$ALCOHOL -

0.00015029544*pmax(data$ALCOHOL-0.1,0)^3 -

0.0021265611*pmax(data$ALCOHOL-1,0)^3 

+0.0029832769*pmax(data$ALCOHOL-3,0)^3 -

0.00068765143*pmax(data$ALCOHOL-9,0)^3 -1.8769011e-

05*pmax(data$ALCOHOL-33,0)^3 +0.69669285*(data$DIABETES=="1") 

+0.75968055*(data$SMOKING=="1")+ 0.63248362*(data$SEX=="2") -

0.59146649*(data$SMOKING=="1")*(data$SEX=="2")) 

 

 

Cutoff values for risk groups  

   Modellab  Modelnon-lab 

Minimal (15-yr risk <0.5%): < -0.258  < -0.412 

Low (15-yr risk 0.5-4%):  -0.259-2.066 -0.413-1.912 

Intermediate (15-yr risk 5-9%):  2.067-2.784  1.913-2.632 

High (15-yr risk ≥10%):   ≥ 2.785  ≥ 2.633 
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Supplementary figures 

 

(A) 

 

(B) 
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Fig. S1. Correlations between continuous variables measured at baseline. Blue 

indicates positive correlation coefficients, and red negative coefficients. (A) 

Spearman correlation and (B) Pearson correlation). 
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(A)                                 (B)  

  

 

Fig. S2. The functional form of body mass index (BMI) in the multivariate model 

when adjusting for (A) waist circumference (WC) or (B) waist-hip ratio (WHR). 
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(A)                                 (B) 

   

(C)    (D) 

   

 

Fig. S3. Plots of the age-adjusted non-linear interaction effect between sex and key 

predictors using restricted cubic splines. (A) alcohol use (drinks/week), (B) gamma-

glutamyltransferase (GGT), (C) waist-hip ratio (WHR), (D) waist circumference (WC). 

Blue (1) = men; red (2) = women.  
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Fig. S4. Hazards ratios with 95% confidence intervals for each covariate in Modellab 

separately for men and women.  
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Fig. S5. Rank-hazard plots to visualize the relative importance on a population level 

of covariates in Modellab. The key idea is to rank the covariate values and plot the 

relative hazard as a function of ranks scaled to interval (0-1). The relative hazard is 

the hazard plotted in respect to the reference hazard, which is set to the median of 

the covariate. Covariates, which are measured in different units, are scaled ranks to 

allow plotting them in the same graph. This takes into account not only the regression 

coefficients and statistical significance, but also the prevalence in the population of 

abnormalities in all the covariates.  
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Fig. S6. Apparent Wolbers’ C for Modellab and Modelnon-lab over 15 years of follow-up. 
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Fig. S7. Aalen-Johansen cumulative incidence of liver events stratified by risk group 

of Modellab in the derivation cohort, with non-liver death considered a competing 

event.  
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Fig. S8. Hazard rates are parallel between risk groups in Modellab 
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Fig. S9. Aalen-Johansen cumulative incidence of liver events stratified by risk group 

of Modelnon-lab in the derivation cohort, with non-liver death considered a competing 

event 
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(A) 

 

(B) 

  

Fig. S10. The distribution of the risk scores (linear predictor) in the derivation and 

validation cohorts. (A) Modellab, (B) Modelnon-lab  
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(A) 

 

(B) 
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(C) 

 

 

Fig. S11. Cumulative incidence of liver outcomes by risk group for (A) Modellab and 

(B) Modelnonlab in the CCHS cohort, and (C) for Modelnonlab in the Whitehall II cohort. 

Analyses performed using the Aalen-Johansen method considering death without 

liver disease as a competing risk event. 
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Fig. S12. Hazard ratios with 95% confidence intervals for comparisons of low, 

intermediate, and high risk groups against the minimal risk group separately in the 

derivation and validation cohorts.  
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(A)                                            (B) 

  

(C)                (D) 

   

 

Fig. S13. Calibration plots for (A) Modellab and (B) Modelnonlab in the derivation cohort 

showing the calibration between observed and predicted survival probability. The 

dotted black line corresponds to bootstrap cross-validated estimates. Calibration 

plots based on the external validation datasets; the (C) Whitehall II cohort and (D) the 

Copenhagen City Heart Study (CCHS) cohort. 

 



36 
 

 

 

Fig. S14. Results of analysis on the relatedness between the derivation and 

Whitehall II validation dataset and the extent to which they share common predictor 

effects in the case of Modelnon-lab. The membership model analysis showed that the 

derivation and validation samples were highly unrelated (C-statistic 0.92, 95% CI 

0.91-0.92, y-axis) in terms of case mix. In addition, we observed a decreased 

variability in the model’s linear predictor (left panel, x-axis) and a slightly increased 

mean value of the linear predictor in the validation sample (right panel, x-axis) as 

compared to that in the derivation sample. 
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Fig. S15. Mean Modelnon-lab with 95% confidence intervals measured at the various 

follow-up examinations of the Whitehall II study separately for those who developed 

incident liver events and those who did not. Measurements are 3-8 years prior to 

baseline (phase 3 of the Whitehall II study), at baseline (phase 5), at 3-7 years post-

baseline (phase 7), 8-12 years (phase 9), and 13-17 years (phase 11).  

  



38 
 

(A) 

 

 

(B) 
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Fig. S16. Applying the nomograms in practice to evaluate an individual’s 15-year risk 

for advanced clinical liver disease. Our example individual is a 52-year old male, who 

has diabetes, is a current smoker, drinks around 14 standard alcohol drinks per 

week, has a waist-hip ratio (WHR) of 1.1, and a gamma-glutamyltransferase (GGT) 

of 65 U/L. The blue circles indicate the characteristics of our example individual, 

while the yellow circles show the absolute 15-year risk estimate. In panel A, the user 

needs to sum the single points (12 + 44 + 34 + 15 + 39 = 144) and then convert the 

final points into the estimated 15-year risk (= 6 %). 
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Supplementary tables 

 

Table S1. Flow chart of inclusion and exclusion criteria in the derivation and 

validation cohorts. 

Cohort Derivation Validation 
 

Finrisk and 

Health 2000 

studies 

Whitehall II study, 

phase 5 

participants  

Copenhagen City Heart 

Study, fourth 

examination, age 40-70 

years 

Initial sample, n 41648 7860 3467 

Exclusions, n 
   

Baseline diagnosis of 

chronic liver disease 

(ICD10: K70-K77, 

C22.0; ICD8/9: 570-

573, 155.0) 

299 4 39 

Chronic viral hepatitis 

at baseline or during 

follow-up (ICD10: B18) 

89 7 0 

Current alcohol 

abstainers at baseline 

(had used alcohol 

earlier and then 

stopped) 

1866 118 379 
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Age < 40 or > 70 years 

at baseline 

13634 2673 0 

Analytical sample, n 25760 5058 3049 
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Table S2. ICD-codes used to define liver outcomes in the derivation and validation 

cohorts. Only ICD-10 codes were used in the validation cohort. 

 

ICD-10 

code 

Diagnosis 

K70.1 Alcoholic hepatitis 

K70.2 Liver fibrosis caused by alcohol 

K70.3 Alcoholic cirrhosis 

K70.4 Liver failure related to alcohol 

K70.9 Liver disease caused by alcohol 

K72.0 Acute liver failure 

K72.1 Chronic liver failure 

K72.9 Liver failure unspecified 

K74.0 Liver fibrosis  

K74.1 Liver sclerosis 

K74.2 Liver fibrosis and sclerosis 

K74.6 Liver cirrhosis unspecified 

K76.7 Hepatorenal syndrome 

I85.0 Esophageal varices with bleeding 

I85.9 Esophageal varices without bleeding 

C22.0 Hepatocellular carcinoma 

ICD-9 

code 

 

571.1 Acute alcoholic hepatitis 

571.2 Alcoholic cirrhosis of liver 
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571.3 Alcoholic liver damage, unspecified 

571.5 Cirrhosis of liver without mention of 

alcohol 

571.8 Other chronic nonalcoholic liver disease 

572.2 Hepatic encephalopathy 

572.4 Hepatorenal syndrome 

572.8 Other sequelae of chronic liver disease 

456.0 Esophageal varices with bleeding 

456.1 Esophageal varices without mention of 

bleeding 

155.0 Liver cancer 

ICD-8 

code 

 

571.0 Alcoholic cirrhosis 

571.8 Cirrhosis, other 

571.9 Cirrhosis, unspecified 

573.0 Hepatitis NUD 

573.9 Other liver disease 

155.01 Liver cancer 
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Table S3. Baseline variables initially included and number of missing data for each 

variable. 

 

                     N missing    % Restrictions 

HOMA-IR                16946   66 Available in FINRISK 1992 and  

2002 and Health 2000 studies 

Binge drinking          13806   54 Available in FINRISK 2002 and  

2007 and Health 2000 studies 

AST                  13626   53 Available in FINRISK 2002-2012 

studies 

ALT  12956   50  Available in FINRISK 2002-2012 

studies 

Exercise               3979   15 Available in FINRISK 1992-2007  

and Health 2000 studies 

Alcohol use  

(drinks/week)  1332    5 

Smoking group           404    2 

Alcohol status *            346    1 

Smoking status              224    1 

LDL-cholesterol              114    <1 

GGT                     94   <1 

Body-mass index          91    <1 

Triglycerides                  83    <1 

HDL-cholesterol             82    <1 

Non-HDL-cholesterol    82    <1 
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Waist-hip ratio                70    <1 

Waist circumference   60    <1 

Age                      0    0 

Sex                       0    0 

Diabetes                  0    0 

 

* Data on whether a subject was a lifetime abstainer, current abstainer or active 

alcohol user  
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Table S4. Univariate predictors of liver outcomes by Cox regression analysis. 

 

Imputed dataset * HR (95% CI) P 

Age 1.03 (1.01-1.05) <0.001 

Women 0.36 (0.27-0.48) <0.001 

Diabetes 2.78 (1.96-3.94) <0.001 

Waist circumference 1.04 (1.03-1.05) <0.001 

Waist-hip ratio per 1 SD change 2.04 (1.82-2.27) <0.001 

Body mass index 1.04 (1.01-1.07) 0.0052 

Alcohol (drinks/week) 1.06 (1.06-1.07) <0.001 

Smoking status 
  

Never/former smoker Reference 
 

Current smoker 2.80 (2.15-3.65) <0.001 

GGT 1.02 (1.02-1.02) <0.001 

Alcohol status 
  

Drinker Reference 
 

Lifetime abstainer 0.30 (0.14-0.64) 0.0018 

Smoking group 
  

Never smoker Reference 
 

Former smoker 1.71 (1.19-2.45) 0.0036 

Smoker, 0-9 cigarettes/day 2.45 (1.44-4.16) <0.001 

Smoker, 10-19 cigarettes/day 2.77 (1.80-4.25) <0.001 

Smoker, 20+ cigarettes/day 4.57 (3.20-6.52) <0.001 

 

Complete-case dataset 
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Exercise (20-30min slightly out of breath and sweaty) 

At least 2 times a week Reference 
 

2-4 times a month 1.10 (0.79-1.54) 0.559 

Less often 2.06 (1.48-2.85) <0.001 

ALT 1.02 (1.01-1.02) <0.001 

AST 1.01 (1.01-1.02) <0.001 

Binge drinking (5 or more drinks per occasion) 

Less often Reference 
 

Monthly 2.99 (1.85-4.84) <0.001 

Weekly 7.09 (4.75-10.56) <0.001 

HOMA-IR 1.02 (1.01-1.02) <0.001 

 

* P-values and HRs are similar in both the complete-case dataset and in the imputed 

dataset. 
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Table S5. Interaction terms, adjusted for age. 

 

  

 

 

 

 

 

 

 

 

  

 P (adjusted for age) 

SEX * AGE 0.454 

SEX * DIABETES 0.629 

SEX * WHR  0.842 

SEX * ALCOHOL 0.778 

SEX * SMOKING STATUS 0.102 

SEX * GGT  0.058 
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Table S6. Interaction terms in multivariable models. 

 Modellab Modelnon-lab 

 P (multivariable) P (multivariable) 

SEX * AGE 0.785 0.591 

SEX * DIABETES 0.474 0.542 

SEX * WHR  0.934 0.912 

SEX * ALCOHOL 0.800 0.995 

SEX * SMOKING STATUS 0.080 0.071 

SEX * GGT 0.020  
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Table S7. Reclassification table for number of liver events occurring within 15 years 

from baseline. The 15-year risk cutoffs are 0.5%, 5%, and 10%. 

 

 

 

 

  

 Modelnon-lab 

Modellab < 0.5% < 5% < 10% ≥ 10% 

< 0.5% 17 5 0 0 

< 5% 7 91 19 1 

< 10% 0 8 8 8 

≥ 10% 0 13 25 22 
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Table S8. Net reclassification index (NRI) when comparing Modellab with Modelnon-lab. 

NRI compares one model with another model for their ability to correctly classify 

cases into correct risk categories. The NRI of -0.117 means that reclassification 

worsens by approximately 12% when using Modelnon-lab instead of Modellab; however, 

this difference was non-significant.  

 

  

 

 

 

 

 

  

 Estimate Lower 95% 

CI         

Upper 95% 

CI 

NRI -0.117 -0.245 0.015 

NRI+           -0.033 -0.158 0.084 

NRI-           -0.084 -0.091 -0.055 

Pr(Up|Case) 0.179   0.121   0.248 

Pr(Down|Case)   0.212   0.148  0.288 

Pr(Down|Control)   0.047   0.040  0.050 

Pr(Up|Control) 0.131   0.095   0.138 
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Table S9. Number of subjects with incident liver outcomes, total number of subjects 

in each risk group, and cumulative incidence estimates by the Aalen-Johansen 

competing risk method. 

 

   

 

 

 

 

 

 

  

 Derivation cohort CCHS Whitehall II 

Modellab Events/subjects 15 yrs Events/subjects 15 yrs Events/subjects 15 yrs 

Minimal risk      23/12731 0.27% 5/752 0.14% 
  

Low risk  123/11968 1.48% 32/2001 0.56% 
  

Intermediate risk  27/662 5.69% 14/161 6.21% 
  

High risk     49/399 17.20% 14/135 7.67% 
  

Modelnon-lab  

Minimal risk      24/10831 0.33% 11/597 0.51% 8/1497 0.09% 

Low risk  127/13718 1.28% 39/2184 0.83% 29/3178 0.54% 

Intermediate risk  48/940 7.75% 11/188 4.28% 12/251 1.99% 

High risk     23/271 14.43% 4/80 3.50% 4/46 6.98% 
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