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Description of data and statistical analyses

FINRISK and Health 2000 cohort description

The methods, measurements and protocols used in the FINRISK and Health 2000
studies have been essentially the same over time and are similar to those in the
Health 2000 Survey '-2. Data were collected from each participant at baseline via
interviews (Health 2000), questionnaire and health examination by trained physicians
and nurses (Health 2000) and trained nurses (FINRISK) using standardized
procedures of the MONICA 3 and European Health Risk Monitoring projects . Blood
samples collected at baseline for a wide spectrum of laboratory measurements were
handled using a standardized protocol. Detailed descriptions of study protocols have
been published previously 2. All participants provided signed informed consent, and
the studies were approved by the Coordinating Ethical Committee of the Helsinki and
Uusimaa Hospital District (previously studies also approved by the institutional review
board of the National Public Health Institute, both in Helsinki, Finland). The FINRISK
and Health 2000 sample collections were transferred to THL Biobank in 2015 after
approval of the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital

District.

Follow-up data were obtained from several national registers through linkage using
the unique personal identity code assigned to all Finnish residents. Data for
hospitalizations were obtained from the Care Register for Health Care (HILMO),
which covers all hospitalizations in Finland since 1969. One or several ICD-
diagnoses are assigned to each hospitalization at discharge; these diagnosis codes

are systematically recorded in the HILMO register. Data for malignancies were



obtained from the Finnish Cancer Registry, with nationwide cancer records since
1953. Vital status and cause of death data were obtained from Statistics Finland. In
Finland, each person who dies is by law assigned a cause of death (in accordance
with the ICD) to the official death certificate, issued by the treating physician based
on medical or autopsy evidence, or forensic evidence when necessary; the death
codes are then verified by medical experts at the register and recorded according to
systematic coding principle. Data collection to all these registries is mandatory by law

and general quality is consistent and virtually 100% complete 58.

Statistical analyses

The primary variables of interest were objective, readily available, simple and
reproducible factors identified a priori based on previously published data, clinical
rationale and their ease of use in primary care settings; however, we were limited to

factors available in the dataset.

In the derivation cohorts, respondents were asked to report how often they
consumed alcoholic beverages during the previous year and the average amount
they consumed per week during the previous month. Average alcohol intake (grams
per day) was calculated as the sum of the daily number of drinks multiplied by the
average alcohol content per type of alcoholic beverage. In the Whitehall 1l data,
respondents reported the number of drinks they consumed in the previous week, and
we used the average alcohol intake reported over the follow-up visits (phases) 1-5.
One drink was defined as 10 grams of ethanol in line with recent guidelines .
Participants were also asked if they had been abstinent their entire life (lifetime

abstainer) or had used alcohol earlier and then stopped (current abstainer). Binge



drinking was defined as drinking 5 or more alcohol drinks per occasion. Respondents
reported the number of times during the last 12 months that they consumed 5 or
more drinks per occasion. Smoking status (active smoker, former or never smoker)
and number of daily cigarettes were asked. Waist and hip circumference were
measured using standard techniques as previously described 2. Exercise was
assessed by asking how often the subject performs leisure-time physical exercise for
at least 20-30 minutes so that he/she is at least slightly out of breath and sweaty.
Diabetes was defined either by a fasting serum glucose =27.0 mmol/L (126 mg/dL),

taking diabetic medication, or by having a prior known diabetes diagnosis.

We developed two parallel models, one based on non-laboratory values only
(Modelnon-1ab), and one based on the same variables and additionally including
laboratory values (Modeliab).

Gamma-glutamyl transferase (GGT) was considered as a marker of liver damage

and/or oxidative stress.

GGT was chosen as the primary analyte of interest over other common liver

enzymes because of several reasons:

1) GGT is a stronger predictor of incident clinical liver disease than ALT or AST ir
previous studies 8.
2) GGT shows highest sensitivity for liver disease above other liver tests and is a

good predictor of liver disease and liver mortality °.



3) GGT is a more sensitive detector of hepatic steatosis than ALT or AST, and
contributes to several algorithms for the diagnosis of NAFLD (Fatty Liver Index and
SteatoTest) and liver fibrosis (Fibrotest and Hepascore) '°.

4) GGT is an acknowledged trigger for further liver fibrosis assessment in fatty liver
disease according to expert opinion .

5) GGT reflects body oxidative stress '2, which is implicated in the pathophysiology of

chronic liver disease 3.

Modification of some variables on clinical grounds

Alcohol use was assessed as number of drinks (a 10g of ethanol) per week. Alcohol
use was capped at 50 drinks per week, because higher intake is generally associated
with considerable reporting bias (underreporting), there were few subjects with higher
consumption in our dataset, higher intake is clearly associated with severe health
risks (both liver-related and other diseases) regardless of our risk prediction model.
This means that, in such persons, alcohol-reducing interventions are merited
anyway. In addition, UK guidelines recommend liver evaluations for those with

alcohol consumption of more than 50 drinks per week 4.

GGT was capped at 200 U/L, because higher values deserve further evaluation
regardless of our risk prediction model, and there were few subjects with GGT >200
U/L in our cohorts, thus resulting in substantial uncertainty around risk estimates

when GGT is above 200 U/L.



Imputation of missing baseline values

Baseline data with <5% missingness were imputed by 5 multiple imputations using
the predictive mean matching method in the mice package in R-software for the
following continuous variables waist circumference, waist-hip ratio, body mass index,
alcohol use (drinks/week), HDL-cholesterol, GGT, triglycerides, and non-HDL-
cholesterol. Missing values were predicted based on these same variables as well as

age, sex, diabetes, smoking status, and the liver outcome.

In the derivation cohorts, data on exercise, binge drinking, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), and homeostasis model assessment of
insulin resistance (HOMA-IR) were missing in >15% because these variables had not
been assessed in all sub-cohorts. These variables were excluded from initial variable
selection, but later tested in the complete-case dataset whether they improved model
fit and performance. These variables were not imputed due to the high missingness

rate.

Model building

Candidate variables were tested for association with liver outcomes by univariate and
multivariable Cox regression analyses with incident liver disease as the outcome.
The proportional hazards assumption of the Cox models was checked using
Schoenfeld residuals, and no violations were detected. Continuous predictors were
assessed for possible nonlinear relationship with outcome using restricted cubic
splines with degrees of freedom selected using the Akaike Information Criterion (AIC;
a smaller AIC-value is better). These procedures were repeated for the multivariable

model. To limit collinearity, among variables with a Spearman correlation coefficient



of >0.6 (Supplementary figure 1), we chose the variable judged to be clinically more
important. In addition, in the multivariable model, we tested whether model fit was
improved by replacing these variables with the omitted correlated variables.
Multicollinearity was also assessed with the variance inflation factors. Predictors of
liver outcomes with a univariate P<0.2 were examined in the multivariable analysis,
and the final model was selected by backward stepwise elimination separately with
P>0.05 or AIC as removal criteria, except for age, which was retained in the model as
a measure of exposure time regardless of statistical significance, assuming that older
individuals have longer exposure times. Improvement in model fit was subsequently
tested by re-insertion one at a time of the removed predictors. Two-way interactions
among the variables in the final model and with sex were investigated and included in
the final model if they improved model fit. We assessed model fit and model
performance with AIC and and Wolbers’ C-statistic, respectively, and compared

nested models using the likelihood ratio test.

Using cause-specific Cox regression considering death without liver disease as a
competing-risk event, we assessed the performance of the final model in terms of
discrimination (Wolbers’ C and time-dependent AUC) and calibration. Unlike the
commonly used Harrell’s C-statistic, Wolbers’ C and time-dependent AUC account
for the competing risk of death without liver disease 5. Calibration was assessed by
comparing the predicted risk of incident liver disease with the observed risk using
calibration plot. We did internal validation to correct measures of predictive
performance for optimism (over-fitting) by bootstrapping 200 samples of the
derivation data starting from the multivariable variable selection. Bootstrap estimates

of calibration accuracy were performed using the calPlot function of R’s pec-package.



Modeliab was compared to Modelnon-1ab by reclassification, which compares the
models’ abilities to correctly classify cases into correct risk categories (Table S7 and
8). Estimates of 15-year absolute risks of developing a liver outcome based on the
individual risk-factor profile were visualized by color-coded scoring sheets

(nomograms).

External validation was performed by calculating a risk score for each person in the
validation cohorts using the individual predictors and the respective Cox regression
coefficients as estimated in the derivation cohort. We then fitted a cause-specific Cox
regression with this risk score as a single covariate, and examined the performance
of this model by Wolbers’ C-statistic, time-dependent AUC, and calibration plots and
stratified subjects in risk groups using the same cutoff-values of the risk score as in
the derivation cohort. To assess the extent of clinical transportability of the prediction
model, we quantified the relatedness between the derivation and validation dataset,
and the extent to which they share common predictor effects according to Debray et

al 8.

Stepwise variable selection

The following variables were initially considered: age, sex, waist circumference (WC),

waist hip ratio (WHR), body mass index (BMI), GGT, alcohol use (drinks/week),

diabetes, alcohol status, smoking group and smoking status.

Of the anthropometric measures, we chose WHR because it has been shown to be

superior to WC and BMI in discriminating risk for liver disease in the general



population in several studies '7-'%. However, we later analyze whether WC or BMI

brings added value to model performance.

In addition, lipid levels (LDL, HDL, non-HDL and triglycerides) were used in
computation of missing values, but were not included in the multivariate models due

to uncertainty regarding the causal pathways for liver disease.

Variable selection for Modelnon-iab

Multivariate modeling: Based on the analyses above, we started with the following

variables: age, sex, diabetes, WHR, alcohol use, alcohol status and smoking status.

Stepwise backward elimination using the Akaike Information Criterion for variable

selection: Factors in Final Model: age, WHR, alcohol use, diabetes, smoking status.

Alcohol status and sex were removed from the model.

Alternative stepwise backward elimination using P-value <0.05 for variable selection:

the same variables were chosen in the final model.

Testing linearity of predictors: only alcohol use was significantly non-linear.

Forward procedure: does insertion of alcohol status or sex one by one improve

model fit?: Inclusion of sex led to a significant improvement (P=0.03, likelihood ratio

test, LRT) of model fit. There was no improvement after inclusion of alcohol status.



Variable selection for Modelap

Multivariate modeling: Based on the analyses above, we started with the following

variables: age, sex, diabetes, WHR, alcohol use, alcohol status, smoking status, and

GGT.

Stepwise backward elimination using the Akaike Information Criterion for variable

selection: Factors in Final Model: age, WHR, alcohol use, diabetes, smoking status,

and GGT. Alcohol status and sex were removed from the model.

Alternative stepwise backward elimination using P-value <0.05 for variable selection:

the same variables were chosen in the final model.

Testing linearity of predictors: only alcohol use was significantly non-linear.

Forward procedure - does insertion of alcohol status or sex one by one improve

model fit?: There was no improvement (P>0.05, LRT).
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Improvement in model fit in various alternative scenarios

Anthropometric measures

Considering WC instead of WHR provided slightly poorer results for modeliab
performance/fit (C-statistic 0.779 vs 0.786, AlC 4070 vs 4053, p<0.001 by LRT) and
modelnon-iab performance/fit (C-statistic 0.808 vs 0.809, AIC 3943 vs 3938, p<0.001 by

LRT).

An alternative modeliab with BMI (non-linear) and WHR was similar (C-statistic 0.810,
AIC 3914) to a model with WHR without BMI (C-statistic 0.809, AIC 3938, p<0.001).
Similar results were found for modelnon-ab (C-statistic 0.790 vs 0.786, AlIC 4034 vs
4053, p<0.001). A model with BMI vs a model with WHR were fairly similar, but with a
small advantage for WHR (modeliab: C-statistic 0.808 vs 0.809, AIC 3927 vs 3938,

p<0.001, modelnon-ab: C-statistic 0.778 vs 0.786, AIC 4062 vs 4053, p=0.446).

Furthermore, based on the relationship between BMI and risk for incident liver
disease in our multivariate models (Supplementary figure 2), it seems that the added
value from BMI comes solely from underweight status, possibly reflecting pre-existing
illness. In other words, the risk effect from obesity is already captured in the
covariates WHR or WC, but these covariates may not sufficiently capture the risk
effect from underweight. We also analyzed whether a dichotomous covariate
reflecting underweight (yes vs no) stratified by WHQO’s definition of underweight (BMI
<18.5 kg/m?) improve the models. However, there were only 83 subjects with BMI
<18.5 kg/m?and only 2 liver events in this subgroup. Similarly, model performance

did not improve after exclusion of subjects with BMI <18.5 kg/m?. Based on this, and

11



considering that measures of abdominal obesity have previously been shown to be
stronger predictors of liver disease than BMI 1719, we leave BMI out from the models

altogether.

Smoking

Considering smoking group (which includes also the amount of smoking; Table S3)
instead of smoking status (which only considers whether the subject is a current
smoker) did not improve model performance/fit (modeliab: C-statistic 0.807 vs 0.809,
AIC 3944 vs 3938, p<0.001; modelnon-ab: C-statistic 0.784 vs 0.786, AlIC 4057 vs

4053, p<0.001). The model with the simpler smoking status was better.

Additional variables

Inclusion of additional candidate variables was tested in the complete-case dataset.
Model performance/fit was not significantly improved by inclusion of binge drinking
(modeliab p=0.57, modelnon-lab p=0.12), exercise (modeliab p=0.40, modelnon-lab
p=0.18), or HOMA-IR (modeliab p=0.07). The model with GGT was significantly better
than a model with ALT (modeliab AIC 1131 vs 1203, p<0.001), or AST (modeliab AIC

1054 vs 1101, p<0.001).

Influence of gender

We first tested whether the interaction term between sex and the other predictors
was significant in age-adjusted Cox regression analysis for incident liver events
(Table S5), and plotted the age-adjusted non-linear interaction effects between sex

and key predictors using splines (Supplementary figure 3). We then tested whether
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the interaction term between sex and the other predictors were significant in the

multivariate models (Table S6).

Inclusion of the interaction terms between sex and GGT, and between sex and
smoking status alone or together improved model fit significantly in Modeliab (p<0.05,
LRT). Inclusion of the interaction term between sex and smoking status improved

model fit significantly in Modelnon-iab (p=0.019, LRT).

As the interaction effect between sex and GGT was particularly profound at low
levels of GGT, we also tested an interaction term between GGT <25 U/L (yes or no)
and sex in Modeliab. However, inclusion of GGT and the interaction term GGT<25 *
sex did not improve model fit compared to inclusion of GGT and the interaction term

GGT * SEX (P=0.338).

We found no significant interaction between alcohol use and other variables in the
model. Also, considering WC instead of WHR did not improve model fit when tested
separately in women or men. Hazards ratios with 95% confidence intervals for each
covariate in Modeliab separately for men and women are shown in Supplementary

figure 4.

Rank-hazard plots to visualize the relative importance on a population level of

covariates in Modeliab are shown in Supplementary figure 5.

Final models
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The final models include the following factors:

Modeliab: age, WHR, alcohol use (spline variable), GGT, diabetes, smoking status,

sex*GGT, sex*smoking status.

Modelnon-ab: age, WHR, alcohol use (spline variable), diabetes, smoking status,

sex*smoking status.

Alcohol use remained significantly non-linear in both models.

We then checked possible multicollinearity using the variable inflating factor (VIF)

method (excluding interaction terms):

Covariate VIF

Age 1.11
WHR 1.87
Alcohol use 1.46
GGT 1.30
Diabetes 1.06
Smoking status 1.14
Sex 1.77

All VIF values are low (<2); therefore, no significant multicollinearity seems to exist.

Risk stratification

Risk stratification based on Modelap

14



Based on the model’s prognostic index risk score distribution, subjects were
classified into risk groups defined by an estimated 15-year cumulative probability of
liver events of <0.5%, 0.5-4%, 5-9% and >10%, respectively. These risk groups are

tE 11 ” oy

called “minimal risk”, “low risk”, “intermediate risk”, and “high risk” (Supplementary

figure 7-8).

We used 15-year risk as it is known that it takes on average this time for clinical liver
endpoints to develop from early-stage liver disease (fibrosis stage 0-1) 29, and risk
stratification on a shorter time scale may thus lead to suboptimal discrimination. This
is different from studies with risk stratification based on the severity of subclinical

disease (fibrosis scores) rather than pathophysiologic risk factors of disease (present

models).

Risk group No events Liver event Non-liver death Proportion
(liver event
/ non-liver
death)

Minimal risk 12074 23 634 0.036

Low risk 10525 123 1320 0.093

Intermediate risk 508 27 127 0.213

High risk 269 49 81 0.605

15



The high-risk group comprising 1.5% of the entire population was able to capture
22% of all liver events within 15 years. Considering the high- and intermediate-risk

groups together, the corresponding values were 4% and 34%, respectively.

Risk stratification based on Modelnon-iab

Subjects were classified into risk groups as above (Supplementary figure 9).

Risk group No events Liver event Non-liver death Proportion
liver event
[ non-liver
death)

Minimal risk 10257 24 550 0.044

Low risk 12195 127 1396 0.091

Intermediate risk 731 48 161 0.298

High risk 193 23 55 0.418

The high risk group comprises only 1% of the entire population, but 10% of all liver
events within 15 years occurred in this risk group. Considering the high and
intermediate risk groups together, the corresponding values are 5% and 32%,

respectively.
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External validation

The distribution of the risk scores (linear predictor) in the derivation and validation

cohorts are shown in Supplementary figure 10.

Relatedness between the derivation cohort and Whitehall Il cohort

Besides statistical reproducibility, we also assessed the extent of clinical
transportability of Modelnoniab by quantifying the relatedness between the derivation
and Whitehall Il validation dataset and the extent to which they share common
predictor effects 6. Relatedness was examined by fitting a binary logistic regression
model, a membership model, to predict the probability of an individual belonging to
the derivation dataset. We assessed discriminative ability of this membership model,
which included age, sex, WHR, diabetes, alcohol use, smoking status, follow-up time
and liver event (yes/no) as independent variables, by means of concordance (C)
statistic (Supplementary figure 14). Here, a higher C-statistic indicates a lesser extent

of relatedness between the datasets.

The extent to which the datasets share common predictor effects was examined by
assessing the relative difference in spread (standard deviation) and the difference in
mean of the model’s linear predictor in the validation dataset as compared to the
derivation dataset. When the derivation and validation samples have a very similar
case mix, external validation provides results similar to internal validation, and, thus,
adds little additional value. A higher heterogeneity in predictor-outcome associations,
i.e. higher variability of the linear predictor, indicates better discriminative ability of
the model. A difference in the mean of the linear predictor between the derivation and

validation samples reflects the difference in the predicted frequency of the outcome,

17



with a large difference being indicative of the model's calibration-in-the-large in the

validation sample.

A similar relatedness analysis for the CCHS cohort could not be performed because

none of the researchers had at the same time access to raw data from both the

derivation and validation cohorts.
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The risk score equation

The equation in R software language

data = name of the R data

AGE = age in years (40-70 years)

SEX =men = 1; women = 2

WHR = waist hip ratio

ALCOHOL = number of weekly drinks (1 drink = 10 g ethanol)
Set to = 50, if >50 drinks per week

GGT = gamma glutamyltransferase (U/L)
Set to = 200 U/L if >200 U/L

DIABETES =yes =1;n0=0

SMOKING = current smoker = 1; never/previous smoker = 2

Modelian

data$modellab <- (-6.7922721 + 0.044744302* data$AGE + 0.32961593*(
data$WHR*10) + 0.19860813* dataSALCOHOL -
0.0082096868*pmax(data$ALCOHOL-0.1,0)*3
+0.010575035*pmax(data$ALCOHOL-1,0)"3 -0.002004756*pmax(data$ALCOHOL-
3,0)"3 -0.00033998925*pmax(dataSALCOHOL-9,0)"3 -2.0602882e-
05*pmax(dataSALCOHOL-33,0)*3 +0.011813962* data$GGT
+0.18721469*(data$SEX=="2") +0.55249734*(data$DIABETES=="1") +
0.74679941*(data$SMOKING=="1") +0.0054325769* data$GGT*(data$SEX=="2") -

0.64903176%( data$SEX=="2")*( data$SMOKING=="1"))
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Modelnon-iab

data$modelnonlab <- (-8.0940103 +0.044177151* data$AGE +0.48927753*(
data$WHR*10) +0.19222894* data)ALCOHOL -
0.00015029544*pmax(databALCOHOL-0.1,0)"3 -
0.0021265611*pmax(dataS$ALCOHOL-1,0)"3
+0.0029832769*pmax(databALCOHOL-3,0)"3 -
0.00068765143*pmax(databALCOHOL-9,0)*3 -1.8769011e-
05*pmax(dataSALCOHOL-33,0)*3 +0.69669285*(data$DIABETES=="1")
+0.75968055*(data$SMOKING=="1")+ 0.63248362*(dataSEX=="2") -

0.59146649*(data$SMOKING=="1")*(data$SEX=="2"))

Cutoff values for risk groups

Modeliab Modelnon-lab
Minimal (15-yr risk <0.5%): <-0.258 <-0.412
Low (15-yr risk 0.5-4%): -0.259-2.066 -0.413-1.912
Intermediate (15-yr risk 5-9%): 2.067-2.784 1.913-2.632
High (15-yr risk 210%): >2.785 > 2.633
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Fig. S1. Correlations between continuous variables measured at baseline. Blue
indicates positive correlation coefficients, and red negative coefficients. (A)

Spearman correlation and (B) Pearson correlation).
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log relative hazard

BM
Adjusted to-AGE=54 WC=91.5 alco1=3 DIABETES=0 SMOKING2=1 GGT2=24.3

log relative hazard

MI
Adjusted to-AGE=54 WHR10=9.1 alco1=3 DIA BETES=0 SMOKING2=1 GGTZ2=24.3

Fig. S2. The functional form of body mass index (BMI) in the multivariate model

when adjusting for (A) waist circumference (WC) or (B) waist-hip ratio (WHR).
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Fig. S3. Plots of the age-adjusted non-linear interaction effect between sex and key

predictors using restricted cubic splines. (A) alcohol use (drinks/week), (B) gamma-

glutamyltransferase (GGT), (C) waist-hip ratio (WHR), (D) waist circumference (WC).

Blue (1) = men; red (2) = women.
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Rank-hazard plot
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Fig. S5. Rank-hazard plots to visualize the relative importance on a population level
of covariates in Modeliab. The key idea is to rank the covariate values and plot the
relative hazard as a function of ranks scaled to interval (0-1). The relative hazard is
the hazard plotted in respect to the reference hazard, which is set to the median of
the covariate. Covariates, which are measured in different units, are scaled ranks to
allow plotting them in the same graph. This takes into account not only the regression
coefficients and statistical significance, but also the prevalence in the population of

abnormalities in all the covariates.
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Fig. S6. Apparent Wolbers’ C for Modeliab and Modelnon-1ab over 15 years of follow-up.
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Fig. S16. Applying the nomograms in practice to evaluate an individual's 15-year risk
for advanced clinical liver disease. Our example individual is a 52-year old male, who
has diabetes, is a current smoker, drinks around 14 standard alcohol drinks per
week, has a waist-hip ratio (WHR) of 1.1, and a gamma-glutamyltransferase (GGT)
of 65 U/L. The blue circles indicate the characteristics of our example individual,
while the yellow circles show the absolute 15-year risk estimate. In panel A, the user
needs to sum the single points (12 + 44 + 34 + 15 + 39 = 144) and then convert the

final points into the estimated 15-year risk (= 6 %).
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Supplementary tables

Table S1. Flow chart of inclusion and exclusion criteria in the derivation and

validation cohorts.

abstainers at baseline
(had used alcohol
earlier and then

stopped)

Cohort Derivation Validation
Finrisk and Whitehall Il study, | Copenhagen City Heart
Health 2000 phase 5 Study, fourth
studies participants examination, age 40-70

years

Initial sample, n 41648 7860 3467

Exclusions, n

Baseline diagnosis of | 299 4 39

chronic liver disease

(ICD10: K70-K77,

C22.0; ICD8/9: 570-

573, 155.0)

Chronic viral hepatitis | 89 7 0

at baseline or during

follow-up (ICD10: B18)

Current alcohol 1866 118 379
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Age <40 or > 70 years | 13634 2673 0
at baseline
Analytical sample, n | 25760 5058 3049
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Table S2. ICD-codes used to define liver outcomes in the derivation and validation

cohorts. Only ICD-10 codes were used in the validation cohort.

ICD-10 Diagnosis

code

K70.1 Alcoholic hepatitis

K70.2 Liver fibrosis caused by alcohol
K70.3 Alcoholic cirrhosis

K70.4 Liver failure related to alcohol
K70.9 Liver disease caused by alcohol
K72.0 Acute liver failure

K72.1 Chronic liver failure

K72.9 Liver failure unspecified

K74.0 Liver fibrosis

K74.1 Liver sclerosis

K74.2 Liver fibrosis and sclerosis

K74.6 Liver cirrhosis unspecified

K76.7 Hepatorenal syndrome

185.0 Esophageal varices with bleeding
185.9 Esophageal varices without bleeding
C22.0 Hepatocellular carcinoma

ICD-9

code

571.1 Acute alcoholic hepatitis

571.2 Alcoholic cirrhosis of liver



571.3

571.5

571.8

572.2

572.4

572.8

456.0

456.1

155.0

ICD-8

code

571.0

571.8

571.9

573.0

573.9

155.01

Alcoholic liver damage, unspecified
Cirrhosis of liver without mention of
alcohol

Other chronic nonalcoholic liver disease
Hepatic encephalopathy

Hepatorenal syndrome

Other sequelae of chronic liver disease
Esophageal varices with bleeding
Esophageal varices without mention of
bleeding

Liver cancer

Alcoholic cirrhosis
Cirrhosis, other
Cirrhosis, unspecified
Hepatitis NUD

Other liver disease

Liver cancer
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Table S3. Baseline variables initially included and number of missing data for each

variable.

HOMA-IR

Binge drinking

AST

ALT

Exercise

Alcohol use
(drinks/week)
Smoking group
Alcohol status *
Smoking status
LDL-cholesterol
GGT

Body-mass index
Triglycerides
HDL-cholesterol

Non-HDL-cholesterol

N missing

16946

13806

13626

12956

3979

1332
404
346
224
114
94
91
83
82

82

%

66

54

53

50

15

<1

<1

<1

<1

<1

<1

Restrictions

Available in FINRISK 1992 and

2002 and Health 2000 studies

Available in FINRISK 2002 and

2007 and Health 2000 studies

Available in FINRISK 2002-2012

studies

Available in FINRISK 2002-2012

studies

Available in FINRISK 1992-2007

and Health 2000 studies
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Waist-hip ratio
Waist circumference
Age

Sex

Diabetes

* Data on whether a subject was a lifetime abstainer, current abstainer or active

alcohol user

70

60

<1

<1
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Table S4. Univariate predictors of liver outcomes by Cox regression analysis.

Imputed dataset *

Age
Women
Diabetes
Waist circumference
Waist-hip ratio per 1 SD change
Body mass index
Alcohol (drinks/week)
Smoking status
Never/former smoker
Current smoker
GGT
Alcohol status
Drinker
Lifetime abstainer
Smoking group
Never smoker
Former smoker
Smoker, 0-9 cigarettes/day
Smoker, 10-19 cigarettes/day

Smoker, 20+ cigarettes/day

Complete-case dataset

HR (95% Cl)

1.03 (1.01-1.05)
0.36 (0.27-0.48)
2.78 (1.96-3.94)
1.04 (1.03-1.05)
2.04 (1.82-2.27)
1.04 (1.01-1.07)

1.06 (1.06-1.07)

Reference
2.80 (2.15-3.65)

1.02 (1.02-1.02)

Reference

0.30 (0.14-0.64)

Reference

1.71 (1.19-2.45)
2.45 (1.44-4.16)
2.77 (1.80-4.25)

4.57 (3.20-6.52)

P

<0.001

<0.001

<0.001

<0.001

<0.001

0.0052

<0.001

<0.001

<0.001

0.0018

0.0036

<0.001

<0.001

<0.001
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Exercise (20-30min slightly out of breath and sweaty)

At least 2 times a week Reference

2-4 times a month 1.10 (0.79-1.54)

Less often 2.06 (1.48-2.85)
ALT 1.02 (1.01-1.02)
AST 1.01 (1.01-1.02)

Binge drinking (5 or more drinks per occasion)

Less often Reference

Monthly 2.99 (1.85-4.84)

Weekly 7.09 (4.75-10.56)
HOMA-IR 1.02 (1.01-1.02)

0.559

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

* P-values and HRs are similar in both the complete-case dataset and in the imputed

dataset.
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Table S5. Interaction terms, adjusted for age.

P (adjusted for age)

SEX* AGE 0.454
SEX * DIABETES 0.629
SEX* WHR 0.842
SEX* ALCOHOL 0.778
SEX* SMOKING STATUS | 0.102
SEX* GGT 0.058
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Table S6. Interaction terms in multivariable models.

Modeliab

Modelnon-lab

P (multivariable)

P (multivariable)

SEX* AGE 0.785 0.591
SEX * DIABETES 0.474 0.542
SEX* WHR 0.934 0.912
SEX* ALCOHOL 0.800 0.995
SEX * SMOKING STATUS | 0.080 0.071
SEX* GGT 0.020
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Table S7. Reclassification table for number of liver events occurring within 15 years

from baseline. The 15-year risk cutoffs are 0.5%, 5%, and 10%.

Modelnon-iab
Modeliab | <0.5% | <5% |<10% |2=10%
<0.5% 17 5 0 0
<5% 7 91 19 1
<10% 0 8 8 8
> 10% 0 13 25 22
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Table S8. Net reclassification index (NRI) when comparing Modeliab with Modelnon-iab.
NRI compares one model with another model for their ability to correctly classify
cases into correct risk categories. The NRI of -0.117 means that reclassification
worsens by approximately 12% when using Modelnon-iab instead of Modeliab; however,

this difference was non-significant.

Estimate | Lower 95% | Upper 95%
Cl Cl
NRI -0.117 -0.245 0.015
NRI+ -0.033 -0.158 0.084
NRI- -0.084 -0.091 -0.055
Pr(Up|Case) 0.179 0.121 0.248
Pr(Down|Case) 0.212 0.148 0.288
Pr(Down|Control) | 0.047 0.040 0.050
Pr(Up|Control) 0.131 0.095 0.138
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Table S9. Number of subjects with incident liver outcomes, total number of subjects

in each risk group, and cumulative incidence estimates by the Aalen-Johansen

competing risk method.

Derivation cohort CCHS Whitehall Il

Modelian Events/subjects | 15 yrs | Events/subjects | 15 yrs | Events/subjects | 15 yrs
Minimal risk 23/12731 0.27% 5/752 0.14%
Low risk 123/11968 1.48% 32/2001 0.56%
Intermediate risk 27/662 5.69% 14/161 6.21%
High risk 49/399 17.20% 14/135 7.67%

Modelnon-iab

Minimal risk 24/10831 0.33% 11/597 0.51% 8/1497 0.09%
Low risk 127/13718 1.28% 39/2184 0.83% 29/3178 0.54%
Intermediate risk 48/940 7.75% 11/188 4.28% 12/251 1.99%
High risk 23/271 14.43% 4/80 3.50% 4/46 6.98%
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